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Abstract 

It is shown that a group-theoretical definition of the 
conformation of puckered rings, in terms of the 
normal modes of displacement on regular polygons, 
is equivalent to the description in terms of puckering 
coordinates, referred to a mean plane. This means 
that the conformation of a general N-membered ring 
is completely defined by the one-dimensional sym- 
metrical displacements of the regular polygon and 
that practical conformational analysis is always pos- 
sible in terms of the uniquely defined mean plane. 
The displacement modes, fixed by group theory, 
provide a natural basis set for the analysis of com- 
plex conformations as a linear combination of the 
primitive types representing these modes. 

Introduction 

Interest in the puckering of cyclic molecular frag- 
ments developed out of the conformational analyses 
of the cycloalkanes (Hendrickson, 1961, 1964, 1967; 
Dale, 1973) into a topic of general importance for 
crystallography and molecular mechanics. Quanti- 
tative description of ring puckering is a non-trivial 
problem in three dimensions that requires 3N param- 
eters for the characterization of a puckered N- 
membered ring. The set of Cartesian coordinates (xj, 
yj, zj) for each atom j would be such a set, but with 
limited descriptive power owing to the large number 
of parameters involved. It was first shown by Kil- 
patrick, Pitzer & Spitzer (1947) that the conforma- 
tion of any puckered form of cyclopentane can be 
specified in terms of two parameters only - an 
amplitude and a phase angle. These parameters 
relate to the out-of-plane displacements required to 
generate the puckered form from the planar con- 
figuration. Generalization of the concept to the 
larger cycloalkanes was formulated by Pickett and 
others (Pickett & Strauss, 1970, 1971; Bocian, 
Pickett, Rounds & Strauss, 1975; Strauss, 1971). 

The puckered forms of an N-membered ring are 
generated by the set of N displacements perpen- 
dicular to a regular planar polygon. This one- 
dimensional description is unique for the smaller 
rings (N-< 12). The description involves a maximum 
of N parameters. In fact, any puckered form is fully 
characterized by N - 3  symmetry-adapted coordi- 
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nates. The application of the model to a general N- 
membered ring is, however, not immediate. Early 
attempts (Adams, Geise & Bartell, 1970; Geise, 
Adams & Bartell, 1969) to define a generalized set of 
coordinates for five-membered rings required a 
number of approximations and were limited by the 
extent of puckering. 

A general definition of ring-puckering coordinates 
was given by Cremer & Pople (1975) for any type of 
cyclic compound. The method relies on the definition 
of a unique mean plane for a general monocyclic 
puckered ring. The geometry of the puckering 
relative to this plane is described by a set of N - 3  
puckering parameters, which are generalizations of 
the amplitudes and phases of cyclopentane confor- 
mations, introduced by Kilpatrick et al. (1947). The 
N - 3  parameters are defined in terms of the atomic 
coordinates perpendicular to the mean plane only. 
The method has been of practical importance in 
crystallography as the basis of conformational analy- 
sis and the nomenclature for six-, seven- and 
eight-membered-ring conformations (Boeyens, 1978; 
Boessenkool & Boeyens, 1980; Evans & Boeyens, 
1988). 

We now demonstrate the one-to-one correspond- 
ence between the N - 3  symmetry-adapted coordi- 
nates of Pickett & Strauss (1971) and the puckering 
parameters of Cremer & Pople (1975). The expres- 
sions for ring-puckering coordinates as out-of-plane 
displacement modes are derived directly from group- 
theoretical representations to demonstrate the 
general applicability of the model. 

Mathematical derivation 

Following Pickett & Strauss (1971) the puckered 
conformation of an N-membered ring may be gener- 
ated by out-of-plane displacements of the atoms of 
the planar ring. This polygon, of DNh symmetry, and 
the set of N displacements can be used as the basis 
for an irreducible representation, as in vibrational 
analysis. The character tables for N even and odd, 
presented in Appendix 1, directly produce the irredu- 
cible representations of the required displacements as 

F(even) = B2~g.~) + E2u + ... + E(N/2-l)(u.g) 

F(odd) = E'~ + ... + E'~v-1)/2. 
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For each irreducible representation, the out-of-plane 
coordinates of each ring atom, zj, are written in 
terms of symmetry-adapted coordinates. 

The B2w,u) representation produces the out-of- 
plane displacements 

zj= ( -  lyQ, 

where Q transforms as  Bz(g,u). 
The Em representations produce displacements 

zj = pmCOS(2"n'jm / N + ~0m) , 

where pmCOS~Om and pmSinq~m transform together as 
Em, j =  1,...,N, m = 2, . . . , (N- 1)/2 (N odd); m = 2 .... , 
(N/2) -1  (N even). This expression is based on the 
out-of-plane normal coordinates of a thin circular 
rod (Love, 1927): 

Z(O) = pmCOS(mO- ~0m), m = 2,3, . . . .  

The out-of-plane displacements of a general con- 
formation may now be expressed as a linear 
combination of the irreducible representations of 
individual modes of out-of-plane displacement. 

Thus, for a general conformation, 

zj = ( -  1)iQ + ~pmCOS(Zrrjm/N + q~m) (N even) 
m 

z i = ~pmCOS(2~m/N + q~m)" (N odd) 
m 

The expression for each zj is a linear sum over all 
possible m values. We can thus consider only one 
value of m without loss of generality. 

Consider 

and 

Zj = pmCOS(2 zrjm / N + ~0m). 

~ zicos(2 zrjm/ N ) (1) 
J 

~ zjsin( 2 rrjm / N). 
J 

Substitution for zj in these expressions gives (1) as 

~ pmCOS( 2"rrjm / N + q~m)COS( 2 ~jm / N) 
J 

o r  

ZpmCOS ~0mCOS2(2 ~m/N) 
J 

- ~] pmSin ~0mCOS(2 7rj'm / N)sin(2 zrj'm / N) 
J 

and (2) as 

o r  

~,pmcos( 2 zrjm / N + q~m)sin( 2 zrjm / N) 
J 

Z P  m c O s ~ m c O S ( z ' r r j m / N ) s i n ( z ' r r j m / N )  

J 

- -  ~pmsinq~msin2(2 ~ m /  N). 
J 

(2) 

Yjcos2(2,rrjm/N), Yjsin2(2"rrjm/N) and Y~jsin(2zrjm/ 
N)cos(2zrjm/N) can be expressed as ½Zj[I+ 
cos(4zrjmflV)], ½Zj[1 -cos(4zrjm/N)] and ½Xjsin(4~m/ 
N), respectively. 

Yjcos(4zrjm/N) and Yjsin(4zrjm/N)= 0, as shown 
in Appendix 2. 

Expression (1) therefore reduces to (N/2)pmCOS~Om 
and (2) reduces to -(N/2)pmsinq~m. 

Hence, 

(N/2)pmCOSq~m = ~,zjcos(2rrjm/N) (3) 
J 

and 

( N/2)pmsinq~m = - ~ zjsin(2 zrjm/ N) 
J 

Z ~ j  = Zp2mCOS2(ZTrjm/N + ~Om) = (U/2)pZm. 
J J 

The coordinates Pm may be normalized so that 

Elm= E g  

(4) 

But 

p,,,sinq~m = -(2/N)l/2~zjsin(2zrjm/N). 
J 

To ensure a direct correlation between atom 1 and 
q~m, it is necessary to replace j by ( j - 1 )  in the 
expressions above, without changing their meaning: 

pmCOS~Om = ( 2 / N )  l /2 Z ZjCOS{[ 2 7~j - 1)]m/N} 
J 

pmsin~0m = -(2/N)l/2~zjsinff27ffj - 1)]m/N}. 
J 

These expressions are those given by Cremer & Pople 
(1975) to define a set of generalized ring-puckering 
coordinates. The one-to-one correspondence of the 
q~m values and of Pm with their qm is clearly evident. 
These expressions hold true for any N > 3. For N 
even, the symmetry coordinate Q is included. When 
Pm =0; V m =  2,3,4. . . , (N/2)-  1. 

zj= ( -  lyQ 
= ( - 1)2JQ 2 

N 

~ = 02 ~ ( - 1)2J = NO2. (5) 
j j = l  

Z 4  - Q Z(-1)~zJ • 
J 

Equating (5) and (6), one gets 

( 1 / N ) ~ ( - l y z j = Q .  
J 

Once again the value of Q must be normalized 

Z g = e  2. 

(6) 

m j 

With the normalized coordinates, (3) and (4) become 

pmCOS~O m = ( 2 / N )  1/2 ~ zjcos( 2 rrjm / N) 
J 
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Replacing Q by the normalized value, one gets 

Q = ( I /N ' /2)~(-1) iz j .  
J 

j must be replaced by ( j -  1) to correspond with the 
atomic number of the previous expressions: 

Q = ( l /Nl/2) ~ , ( - 1 ) / -  'zj. 
J 

Q is the same as the parameter qu/z of Cremer & 
Pople (1975). 

Replacing Pm and Q with the normalized values, 
one finds the expressions for the out-of-plane dis- 
placements as defined by Cremer & Pople (1975): 

= N-'/2( - l y - ' Q  + ( 2 / N ) l / 2 ~ p  m 
m 

x cos[2~m(j- 1)/N + ~Om] (N even) 

Table 1. Cartesian and puckering coordinates of  the 

S 

C I  

C 2  

C 3  

C 4  

C5  

P u c k e r i n g  p a r a m e t e r s  

q2 = 0"87  A 

q 3 = 0 A  
= 0 o 

hypothetical SC5 boat configuration 

C a r t e s i a n  c o o r d i n a t e s  P u c k e r i n g  c o o r d i n a t e s  

0-00 1.70 0 .50  0 .00  1-59 0 .50  

1.40 0 .75  - 0 .25  1.40 0-64 - 0 .25 

i .25 - 0 .75 - 0 .25  1.25 - 0 .86  - 0 .25 

0 .00  - 1.05 0-50 0-00 - 1-16 0 .50  

- 1.25 - 0 .75  - 0 .25  - 1.25 - 0 .86  - 0 .25 

- 1.40 0.75 - 0 .25  - 1.40 0 .64  - 0 .25 

consider the hypothetical heterocyclic six-membered 
ring: 

Zj ~-" (2/N)I/2~pmCOS[2'71111 q -- 1)/N + q~m] (N odd). 
m 

Discussion 

Pickett & Strauss (1971) approached the conforma- 
tional analysis of puckered tings on the basis of 
symmetry-allowed displacements normal to the 
planes of regular D,vh polygons, whereas Cremer & 
Pople (1975) presented a method to reduce the 
pucker of actual tings to displacements from an 
idealized polygon in the mean ring plane - i.e. the 
inverse operation. The two methods have now been 
shown to be consistent and the special conditions 
imposed by Cremer & Pople (1975) to define a 
unique plane to be natural consequences of the 
group theory. 

Only perpendicular displacements are considered 
to operate on the fully symmetrical polygon. The 
same assumption applies during the inverse opera- 
tion, which consequently always results in a confor- 
mation that projects as a regular polygon on the 
mean plane, irrespective of variations in bond length. 

The theoretical basis of the Cremer & Pople (1975) 
ring-puckering coordinates now provides insights 
into their number and nature. Group theory illus- 
trates how N - 3  parameters specify the positions of 
N atoms in a one-dimensional projection. Each sym- 
metrical conformation and its ring-puckering param- 
eters must correspond to characteristic values of Pm 
and ~Om of the Em representation. This group- 
theoretical basis therefore dictates a fixed rela- 
tionship with symmetry type and the observed 
alternation of the symmetry elements Cs and C2 
along the pseudorotational paths is also rationalized. 

The model is a one-dimensional description of a 
three-dimensional phenomenon and extension of the 
group-theoretical arguments to general N-membered 
rings must be exercised with caution. As an example, 

puckered according to the details specified in Table 
1. Its puckering parameters are the same as those of 
the cyclohexane boat form. The ~02 = 0 indicates a 
mirror plane through S, perpendicular to another 
mirror plane 

I 
I 

I 
I 
I 
I 

m 1 

m 2 

Clearly, m2 is a pseudo mirror plane. The symmetry 
refers only to the zj displacements and not to the ring 
as a three-dimensional chemical object. This limita- 
tion, however, detracts very little from the general 
practical utility of the model. 

The total pucker of a ring results from a linear 
combination of symmetry-adapted primitive normal 
modes, identified by the irreducible representations 
of the D,vh point group. Each coefficient in the 
expansion specifies the contribution from a sym- 
metry class, or primitive mode, and collectively they 
provide a natural basis set for conformational 
analysis. 

The B2 class represents the contribution from 
crown forms, for even-membered rings only, and 
each two-dimensional Em representation adds two 
contributing forms which often constitute a pseudo- 
rotational pair. A general conformation is therefore 
made up of contributions from N - 3  primitive 
forms, consistent with the number of irreducible 
representations. The characterization of these primi- 
tive forms and their incorporation into a scheme for 
quantitative analysis of ring pucker will be the topic 
of a subsequent communication. 
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A P P E N D I X  1 

Charaeter tables for the D m  point groups 
ladapted from Wilson,  Decius  & Cross (1955) and Pickett  & Strauss  (1971)i  

D ~ ,  ( N  o d d )  

DN, E 2 S u ( N -  1)/2 2C~ ~ 2SN(N-- 3)/2 ... ~r~ N Q  No',. 

A~ 1 1 1 1 ... 1 ! 1 
A~ l 1 l I -" 1 - l  - 1  R.. 
A'( 1 - 1  1 - 1  . . . .  1 1 - 1  

A~ '  ] - 1  i - 1  . . . .  1 - 1  1 T ,  

~ '  2 2 c o s ( ~ N )  2 cos(4rr/N) 2 cos(3rr/N) . . . .  2 0 0 R,~. 
F_~ 2 2 c o s ( 2 ~ N )  2 cos(2 x 4 ~ N )  2 cos(6~r/N) --- + 2 0 0 
: ! 

E ' ~ _  tu~ 2 ± 2  c o s [ ( ~ N ) ( N -  I)/2] 2 cos [ (4"s /N)(N-  1)/2] ± 2  c o s [ 3 / 2 ( N -  I ) ( ~ N ) ]  . . . .  2 0 0 
.E"c~_ ~u~ 2 ~-2 c o s [ ( ~ N ) ( N -  1)/2] 2 c o s [ ( 4 ~ N ) ( N -  1)/2] .-V-2 c o s [ 3 / 2 ( N -  IXrr/N)] --- + 2 0 0 

E~ 2 - 2 cos(rr/N) 2 cos(4rr/N) - 2 c o s ( 3 ~ N )  ... + 2 0 0 T,o 

Du~ (N  even)  

Dlvh E 2C~ 2C~ ~ "'" CNN/2 = Cz N/2C~ N/2C~' i 2 S U N / 2 -  1 2SUN~2 - 2 "'" o'h N/2o" a N/2~r, 

At ,  1 1 1 + 1 ! i 1 1 I 1 
Azf 1 1 1 + 1  1 - 1  - 1  1 1 1 
B~, 1 - 1 1 ± i ( - !) N/2 1 - ! I - 1 I 
/ ~  1 - 1 i ± ! ( - 1) u a  - 1 1 1 - 1 1 
.E,s 2 2 eos (2~/N)  2 cos I (2~N)2]  . . . .  2 0 0 2 2 c o s ( 2 ~ N )  2 cos[(2'n'/N)2] 
: i 
.Eks 2 2 cos[(2rr/N)k] 2 cos[(2rr/N)2k] ... 2 ( -  iy '  0 0 2 2 cos[(2n4N)k] 2 cosI(2rr/N)2k] 
: i 
/~vca~- L~ 2 - 2 c o s ( 2 ~ N )  2 eos[(2,rr/N)2] ... 2( - 1) ~m2- '~ 0 0 2 - 2 cos(2rr/N) 2 cos [ (2~N)2]  

1 1 1 1 
1 1 - 1  - 1  R.  

± 1 ( -  1) u'2 1 - 1 
± 1 ( -  1) n'a - 1 1 

. . . .  2 0 0 R~a. 

--- 2 ( -  1)* 0 0 

• .. 2 ( - ! )  ¢ua- ~ 0 0 

At ,  1 1 1 + 1  1 1 I - 1  - 1  - i  - 1  - !  - 1  - 1  
A,~ 1 1 I + 1  1 - i  - 1  - !  - 1  - !  - i  - 1  1 1 7", 
Bt~ 1 - 1  I ± 1  ( - I )  'v'2 1 - I  - !  1 - 1  -T-I ( - 1 )  N:2÷~ - 1  1 
B ~  1 - 1  1 ± 1  ( - 1 )  st2 - 1  i - 1  1 - 1  ~-1 ( - 1 )  N=*~ 1 - 1  
Et .  2 2 cos(2rdN)  2 cos[(2rr/N)2] . . . .  2 0 0 - 2 - 2 c o s ( 2 ~ N )  - 2 cos[(2rr/N)2] --- 2 0 0 T ~  
: 
El,, 2 2 cos [ (2~N)k]  2 cost(2,r/N)2k] ... 2 ( -  1) k 0 0 - 2  - 2  eos[(2rr/N)k] - 2  eos[(2rr/N)2k] ... 2 ( -  l )  k - t  0 0 

Euua)-Jl*, 2 - 2  c o s ( 2 ~ N )  2 cos[(2rr/N)2] ' "  2 ( -  1) tu'2- i~ 0 0 - 2  2 cos(2rr/N) - 2  cos[(2"s/N)2] ... 2 ( -  1) ua  0 0 

Note: When (N/2) is even, the columns under N/2o'. and N/2o'd are inverted. Out-of-plane displacements are represented by F = A2u + 
B2~,,,) + Etg + E2. + E3g + "'" + Etu/2)- tt..). Pickett & Strauss (1971) noted that A,,,, which represents T~, and E~g, which represents Rx 
and Ry, are of no conformational significance. Ignoring these representations is equivalent to the special conditions formulated by 
Cremer & Pople (1975) to avoid trivial translation or rotation of a ring. The symbol (g,u) reads g for N/2 odd and u for N/2 even. 

A P P E N D I X  2 

It is required that 

~cos(4"rrjm/N)  and ~ ] s in (4rr jm/N)  = 0. 
J J 

A c c o r d i n g  to Durel l  & R o b s o n  (1959),  

N - 1  

c o s ( a  + nil) = c o s [ a  + (n - 1)/2/3] 
n = O  

x sin(nfl/Z)/sin(fl /2) 

and 
N - 1  

s in (a  + nil) = s in[a  + (n - 1)/2/3] 
n = 0  

x sin(nfl/2)/sin(/3/2).  

H e n c e  
N 

cos(4rrjm/N) = c o s ( 4 m n / N )  + ... + cos(4mn) 
j = l  

and 

= cos (4wrn /N)  + ... 

+ c o s [ 4 w m ( N -  I ) / N ]  + cos(0) 

= I N -  1 / 4 w r n ~  COSL--   
x (sin2 wrn)/sin(2 wrn/N)  

= 0 .  

N 

s in(4rrjm/N) = s in (4mn/AD + ... + s in (4mn)  
j = l  

= sin(0) + ... + s i n [ 4 w m ( N -  1 ) / N ]  

= . [ ' N - l [ 4 m n ~  ] 
x s in (2rrm) / s in (2wm/N)  

= 0 .  
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[These expressions hold if sin(27rm/N) ~ 0; m = 2, 3, 
. . . , (N-  1)/2, N odd; m = 2 ,3 , . . . , (N/2)-  1, N even.] 

However, 

sin[27r(m/N)] = 0 

{=:}2m/N = K, K E N 

~=}UlZm 

Since m < N/2VN > 3, sin(2mn/N) ~ 0. 
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Abstract  

The conformation of a general puckered ring is 
defined by a linear combination of normal atomic 
displacements, according to the irreducible rep- 
resentations of the DNh symmetry group. Each tw.o- 
dimensional representation contributes two uniquely 
defined primitive modes, superimposed on a one- 
dimensional crown form that only exists for N even, 
adding up to N - 3  primitive forms, for any N. The 
normalized linear coefficients are independent of the 
amplitude of pucker and of the ring numbering 
scheme. The formalism applies to any ring type and 
a quantitative characterization of conformations, 
intermediate between the conventional classical 
forms, is possible. It provides the basis for mapping 
conformations as a function of puckering parameters 
and a simple algorithm for the identification of the 
classical forms. The procedure relates general ring 
conformations to a few simple shapes, familiar to 
chemists, without losing the advantage of quanti- 
tative puckering analysis. 
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Introduct ion 

Group-theoretical analysis of the normal modes of 
displacement on N-membered polygons provides the 
basis of a quantitative formulation of ring pucker 
(Boeyens & Evans, 1989). These symmetry-adapted 
displacement coordinates are equivalent to the 
general puckering coordinates of Cremer & Pople 
(1975) which accurately describe the nature and 
extent of ring pucker. The description is quantitative 
and unique, but the interpretation of numerical 
values in terms of conformational nomenclature, 
familiar to chemists (boat, chair etc.) is not obvious. 
The relationship between puckering parameters and 
conformational type has been established for five- 
(Altona & Sundaralingam, 1972), six- (Boeyens, 
1978), seven- (Boessenkool & Boeyens, 1980) and 
eight- (Evans & Boeyens, 1988) membered rings, by 
mapping the symmetrical (classical) forms in the field 
of puckering parameters. The classical forms, 
previously identified by energy calculations 
(Hendrickson, 1961, 1964, 1967), map out as pseudo- 
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